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INTRODUCTION 

Agriculture for many years has remained to be the 
backbone of the Kenya’s economy and has been a 
source of livelihood of the population in rural areas. 
The report “Agricultural Sector Development Strat-
egy (2022) points that agriculture is the mainstay of 
the Kenyan economy contributing 26% of the GDP 
and another 25% indirectly. The Agricultural Sec-
tor Development Strategy (2022) outlines key ob-
jectives for the sector, with a primary focus on 
achieving an average growth rate of 7 percent per 
year over the next five years. One of the core strate-
gies to achieve this growth is increasing productivi-
ty, commercialization, and the competitiveness of 
agricultural commodities. One of the main ways to 
improve productivity is through the effective appli-
cation of fertilizers (Ritchie et al., 2022). Fertilizers 
play a vital role in enhancing soil fertility, boosting 
crop yields, and ensuring that farmers can produce 
more with the same land resources. By improving 
the availability of fertilizers, Kenya can significant-
ly raise the productivity of its agricultural sector, 
ensuring sustainable growth and competitiveness in 
the global market. Thus, fertilizer application is a 
key factor in realizing the sector's strategic mission 
of creating an innovative, commercially oriented, 
and modern agricultural framework. Different types 
of fertilisers are used in crop production in Kenya, 
which include calcium ammonium nitrate (CAN), 
diammonium phosphate (DAP), calcium nitrate, 
Muriate of potash, NPK, and Urea, among others 
(Ritchie et al., 2022).  
 
Predicting fertilizer demand presents several chal-

lenges, as different studies have shown varying 
levels of success depending on the methodology 
used. Fertilizer demand is a complex, multi-layered 
issue influenced by various factors such as weather 
patterns, economic conditions, government poli-
cies, and shifts in agricultural practices. These com-
plexities make accurate forecasting difficult, and 
several studies highlight the limitations of current 
methods. Tenkorang et al. (2008) used simple line-
ar regression to forecast global fertilizer demand in 
Asia. The study emphasized that accurate demand 
forecasting is crucial for ensuring long-term global 
food security and the profitability of the fertilizer 
industry. However, one of the shortcomings of line-
ar regression is its assumption of a constant rela-
tionship between variables over time. This method 
does not account for trends, seasonality, or autocor-
relation, which are often present in time series data. 
As McQuarrie and Tsai (1998) point out, this can 
lead to inaccurate forecasts since the method over-
looks the sequential dependence inherent in time 
series data. Borkar (2023) addressed these chal-
lenges by using the ARIMA model to forecast ferti-
lizer consumption in India, using data from 1950-
2021. While ARIMA models are better suited for 
handling trends and autocorrelation, the study re-
vealed that even with the optimal model challenges 
remain in capturing the complex dynamics of ferti-
lizer demand. Bezerra et al. (2013) used both ARI-
MA and logistic function models to forecast ferti-
lizer demand in Brazil for the 20 years. Although 
time series models like ARIMA can handle trends, 
they may still face challenges in adapting to  
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sudden external shocks, such as changes in global markets or weather-related disruptions. In Thailand, 
Pisuttinusart et al. (2022) used the SARIMA model to forecast the demand for imported fertilizer because it 
accounts for seasonality and is more advanced than linear regression. In Kenya, studies by Sheahan et al. 
(2016) and Okello (2023) explored hybrid models, such as Seasonal ARIMA-GARCH, to forecast fertilizer 
prices and consumption. Despite the advancements in modelling techniques, it is evident from these studies 
that are highly reliable model for predicting fertilizer demand has not yet been realized. Challenges such as 
changing market conditions, external shocks, and the inherent variability in agricultural systems continue to 
pose obstacles to accurate forecasting.  Accurately determining the amount of fertilizer to import will help 
address the issue of shortages. This can be achieved by forecasting the monthly fertilizer requirements. Mod-
els like regression, ARIMA, and SARIMA have been applied to demand forecasting. Although various fore-
casting methods are available, Kenya's agricultural production is seasonal, and demand fluctuates over time, 
making SARIMA model better for forecasting seasonal demand (Filder et al., 2019).  
 
Seasonal ARIMA models are an extension of traditional ARIMA models, specifically designed to manage 
time series data with seasonal trends. They incorporate autoregressive (AR), integrated (I), and moving aver-
age (MA) elements along with seasonal components. SARIMA models are particularly useful for forecasting 
data that follows recurring time-based patterns. The model is represented as SARIMA (p, d, q) (P, D, Q), 
where the lowercase (p, d, q) refers to the non-seasonal components, and the uppercase (P, D, Q) _s repre-
sents the seasonal components (Shumway et al., 2017). The general equation for SARIMA model is  

 

where  is the value of the time series at time t,  

C is a constant or drift term (only included if the time series has a trend component). 

p represents the order of the autoregressive (AR) component, and  are the autoregressive coefficients. 

d is the order of differencing, indicating the number of times differencing applied to make the time series 
data stationary. 

q is the order of the moving average (MA) component, and  are the moving average coefficients. 

P and Q are the orders of the seasonal AR and MA components with corresponding coefficients.  and 

 
 
One of the best-known methods for modelling SARIMA is the Box-Jenkins methodology, a systematic ap-
proach to identifying, estimating, and diagnosing time series models, particularly ARIMA and SARIMA 
models. This methodology was introduced by Box and Jenkins (1976) and is widely used due to its struc-
tured process, making it effective for time series modelling. The Box-Jenkins methodology is crucial for the 
SARIMA model, as it provides a structured framework to identify the seasonal and non-seasonal compo-
nents of the time series data. For instance, in forecasting fertilizer demand in Kenya, seasonality plays a ma-
jor role due to the agricultural cycles, making SARIMA an ideal model. The Box-Jenkins approach ensures 
that both seasonal (P, D, Q) and non-seasonal (p, d, q) parameters are identified correctly and that the model 
can adequately forecast future demand. 
The Box and Jenkins (1976) entails four main steps in modelling: 
Identification: The first step in the Box-Jenkins methodology is analysis of the time series to determine 
whether it is stationary. If the data is not stationary, differencing is applied, either non-seasonal, seasonal, or 
both, to achieve stationarity. Once stationarity is achieved, the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) are used to identify the orders of the autoregressive (AR), moving average 
(MA), and seasonal components. For the SARIMA model, this process leads to determining the orders of 
(p), (d), (q) for the non-seasonal components, and (P), (D), (Q) for the seasonal components. 
Estimation: After identifying the appropriate model, the next step is to estimate the parameters for the AR 
and MA components. Techniques such as maximum likelihood estimation (MLE) are commonly used for 
this purpose. The SARIMA model equation at this stage is as follows:  
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Where  is the non-seasonal AR compo-

nent,  is the non-seasonal MA component, 

 is the seasonal AR component, 

 is the seasonal MA component, B is the 

backshift operator and  is the error term (white 

noise). 

Diagnostic Checking: Once the parameters are 
estimated, diagnostic checks are conducted by ana-
lysing the residuals. The residuals should behave 
like white noise, indicating that the model has suc-
cessfully captured the underlying data patterns. The 
residuals' ACF is checked to ensure no significant 
correlations remain, which would suggest a well-
fitted model. 
Forecasting: After successfully identifying and 
estimating the model, it can then be used to forecast 
future values. SARIMA models are especially well-
suited for forecasting time series data that display 
both non-seasonal and seasonal trends. 
In this study, SARIMA modelling was carried out 
using the Box-Jenkins methodology, with the pri-
mary aim of investigating trends in fertilizer de-
mand in Kenya through time series analysis tech-
niques. The study focused on analysing and detect-
ing trends and seasonal patterns in the monthly 
fertilizer demand, specifically for Diammonium 
Phosphate (DAP). A key objective was to develop 
SARIMA model tailored to DAP fertilizer demand 
in Kenya and subsequently apply this model to 
forecast future demand, providing a robust frame-
work for understanding and predicting fertilizer 
needs in the country. 

 
METHODOLOGY 
The study was conducted using data on fertilizer 
demand in Kenya, as recorded by the Ministry of 
Agriculture, covering the period from January 2010 
to December 2023. Data inspection and analysis 
were carried out at Chuka University. A longitudi-
nal observational research design was employed to 
investigate the patterns of fertilizer demand over 
the 13-year period. This approach allowed for the 
examination of changes and trends in DAP monthly 
fertilizer demand, providing a comprehensive un-
derstanding of the variations across different sea-
sons and years. 
 
For data collection, the study utilized secondary 
data from the Ministry of Agriculture and Live-
stock Development in Kenya. The use of official 
data ensured accuracy and representativeness, cov-
ering 168 months of DAP fertilizer consumption. 
This extensive dataset was ideal for the application 
of the Box-Jenkins methodology, which requires a 
minimum of 50 observations to develop reliable 
models (Box & Jenkins, 1976). The time series data 
was visualized using time series plots to highlight 
trends, seasonality, and irregularities in the fertiliz-
er demand. The Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test was used to assess the stationarity 
of the data. Model identification followed, focusing 
on identifying the appropriate SARIMA compo-
nents (p, d, q for non-seasonal and P, D, Q for sea-
sonal) using ACF and PACF plots. The R program 
was employed to perform differencing and model 
fitting, including training and testing the model to 
optimize parameters and ensure accuracy. Once a 
satisfactory SARIMA model was established, it 
was used to forecast future fertilizer demand in 
Kenya. 

RESULTS AND DISCUSSION 
Descriptive statistics 
Descriptive statistics For DAP Fertiliser demand (2010-2023) 
 

 
 
The descriptive statistics for Diammonium Phosphate (DAP) in metric tonnes show considerable variability 
in the data. With 168 observations, the mean value is 17,906.31 metric tonnes, indicating a high average de-
mand. The median, at 10,962 metric tonnes, is lower than the mean, suggesting a right-skewed distribution. 
The dataset ranges from a minimum of 0 to a maximum of 100,598 metric tonnes, reflecting significant vari-
ability in demand. The positive skewness of 1.4 further supports this, indicating that while most values are 
clustered towards the lower end, there are a few very high values extending the distribution's tail to the right. 
 

Variable n Mean Median Min Max Skewness 

DAP 168 17906.31 10962 0 

1005
98 1.4 
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Visualisation of Diammonium Phosphate Time 
Series 

Figure 1 is the time series plot of Diammonium 
Phosphate (DAP) fertiliser from January 2010 to 
2023. The graph shows a cyclic pattern with recur-
ring peaks and troughs, indicating varying levels of 
fertiliser demand. A notable drop in demand in 
2010 and 2014 suggests periods of decreased de-
mand. From 2015 to 2019, there is significant de-

mand variability, with highly pronounced peaks 
indicating high demand for DAP in these years. 
However, in 2021, there was a significant drop in 
demand for DAP, which may have been attributed 
to government policies and the COVID-19 effects 
(Mutegi et al., 2024). This suggests that demand for 
DAP fertiliser is highly variable and influenced by 
seasonal requirements, market conditions, or exter-
nal events. 

Figure 1: Diammonium phosphate time series plot 2010 – 2023 
 
Normality Test of Diammonium Phosphate Time Series 
 
A Jarque-Bera test was conducted to assess the normality of the Diammonium Phosphate data. The test 
yielded a test statistic of 78.566 with two degrees of freedom and a p-value less than 2.2e-16. Given the ex-
tremely small p-value, less than the critical α = 0.05, we reject the null hypothesis that the data follows a 
normal distribution. This result indicates that the distribution of Diammonium Phosphate data deviates sig-
nificantly from normality. 
 
TABLE 2: JARQUE-BERA TEST 
 

 

 
In order to better understand the seasonality of the data, a plot of seasonal variation in calcium nitrate fertilis-
er was done.  
 
Figure 2 is a GG-Season plot that overlays the DAP demand data for each year using differently coloured 
lines (See appendix 4). This plot highlights clear monthly trends, with noticeable peaks in January, March, 
and June and smaller peaks in October and December. The variability between years is evident, as each line 
represents a different annual pattern, suggesting significant shifts in demand. This variability implies that 
external factors such as weather, market conditions, or policy changes significantly impact DAP demand. 
 

Statistic Value 

Test Statistic (X-squared) 78.566 

Degrees of Freedom (d.f) 2 

p-value < 2.2e-16 

Conclusion Reject H₀: Data does not follow a nor-
mal distribution 
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Seasonal decomposition of DAP time series 
The graph in Figure 4 demonstrates the seasonal variation in Diammonium Phosphate (DAP) usage over 
2010-2023, with each line representing a different year and distinguished by colours. The data shows a clear 
seasonal pattern, with two noticeable peaks in January and March, indicating higher usage during these 
months. Usage drops significantly from April to August, reflecting a trough during the summer months, fol-
lowed by a gradual increase towards the year's end. The variations among the years are relatively consistent, 
with some years exhibiting slightly higher or lower usage during peak months. 

 
Figure 4: Seasonal variation in diammonium phosphate 
 
The characteristics of the demand patterns are attributed to the pre-planting period when farmers prepare the 
soil for the growing season. A significant drop in usage is observed from April to August, corresponding to 
the summer months when fertiliser application typically decreases. The demand for DAP rises towards the 
end of the year due to preparations for the next planting season and replenishing soil nutrients. While the 
seasonal pattern remains consistent across the years, individual years have slight variations in peak consump-
tion because of the changes in agricultural practices or climatic conditions that influence fertiliser applica-
tion. 
 
Figure 5 divides the plot into twelve subplots, each corresponding to a different month. The y-axis represents 
DAP usage within each subplot, while the x-axis covers 2010 to 2023. The black lines depict the monthly 
usage trends over the years, and the blue lines show the average usage for each month. This plot emphasizes 
the monthly seasonality of DAP usage, with notable spikes in January and March, aligning with the findings 
of the graph in Figure 4. The trend lines indicate a cyclical pattern with high demand in the early months, a 
decline in the middle of the year, and a rise towards the year's end. 

 
Figure 5: Subplots of diammonium phosphate 
 



Time Series Modelling of DAP    152 

J. Env. Sust. Adv. Res. 2024 (1) 147-159 

 

 
Figure 5: Subplots of diammonium phosphate 
 
The findings are that the demand for DAP is highest in January and March, which confirms the findings in 
figure 4. Figure 6, on the other hand, displays a seasonal trend decomposition using LOESS (STL) of the 
DAP time series. This decomposition divides the data into four components: the observed data, the trend, the 
seasonal component, and the remainder (residuals). The first panel shows the raw data, which includes evi-
dent periodic spikes. The second panel illustrates the trend component, showing a general increase in DAP 
usage up to around 2017, followed by a slight decline. The third panel highlights the seasonal component, 
which reveals a consistent pattern of high usage in the early months and lower usage in the middle of the 
year across the entire timeframe. The final panel represents the remainder component, capturing the irregu-
larities or noise not accounted for by the trend or seasonality. 

 
Figure 6: STL Decomposition diammonium phosphate fertiliser time series 
 
The STL (Seasonal and Trend decomposition using Loess) analysis of the Diammonium Phosphate (DAP) 
time series from 2010 to 2023 reveals both a trend and seasonality in the data. The analysis shows an upward 
trend, indicating a gradual rise in DAP demand over the years. This suggests that, even with seasonal fluctu-
ations, the overall demand for fertiliser has been increasing over the years. The seasonal component displays 
recurring higher consumption patterns during certain months, corresponding with planting cycles. These 
findings highlight the seasonal variations and long-term increase in DAP demand. 
 
The three graphs reveal that the Diammonium Phosphate (DAP) time series exhibits a strong seasonal pat-
tern, with high usage in January and March and low usage during summer (June to August). The trend com-
ponent indicates a general increase in DAP usage over the years, reaching a peak around 2017 before a slight 
decline. Figures 4 and 5 show that the consistent seasonal pattern suggests a predictable cyclic behaviour in 
fertiliser usage. The STL decomposition further explains this cyclic behaviour by separating it from long-
term trends and random fluctuations, providing a clearer understanding of the factors driving DAP usage. 
The data demonstrates clear seasonality, which may be influenced by agricultural cycles, potential policy 
changes, and market dynamics that affect fertiliser application practices. 
Testing for stationarity Diammonium Phosphate time series 
The KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test was conducted to check the stationarity of the time 
series data. The test returned a KPSS statistic of 0.1985524 and a p-value (KPSS p-value) of 0.1. The null 
hypothesis of the KPSS test is that the data is stationary, while the alternative hypothesis is that it is non-
stationary. Since the p-value exceeds the common significance level (e.g., 0.05), we fail to reject the null 
hypothesis, indicating that the time series data is likely stationary. The test on the number of differencing 
needed was done using are, and the test results indicated that no differencing was needed. The ACF and 
PACF plots below indicate a minimal correlation between the time series and its lags and the partial correla-
tion coefficients between the series and its lags. 



Time Series Modelling of DAP    153 

J. Env. Sust. Adv. Res. 2024 (1) 147-159 

The Autocorrelation Function (ACF) plot for DAP demand in Figure 7 shows the correlation of the time se-
ries with its lagged values over different time lags. The plot reveals a significant positive correlation at lag 
one and another significant spike at lag 12. The positive spike at lag 1 indicates that the current demand for 
DAP is positively correlated with the previous month's demand, indicating some persistence in the demand 
pattern. The spike at lag 12, on the other hand, indicates a seasonal pattern, suggesting that demand one year 
ago (12 months prior) strongly influences the current demand. 

 
Figure 7: ACF diammonium phosphate 
 
The Partial Autocorrelation Function (PACF) plot in Figure 8 is for DAP demand. It presents the extent of 
correlation between the time series and its lagged values after removing the effects of intermediate lags. The 
PACF plot indicates a significant positive partial autocorrelation at lag 1, which implies that the previous 
month's demand directly influences the current month's demand, with no significant influence from the inter-
mediate months. The spike at lag 12 in the PACF plot suggests that after controlling for the effects of lags 1 
through 11, the demand from 12 months prior still directly influences the current demand, reinforcing the 
seasonal pattern observed in the ACF plot in Figure 7. 
 

 
Figure 8: PACF diammonium phosphate 
 
The ACF and PACF plots in Figures 8 and 9 suggest that the DAP demand series exhibits trend and season-
ality. The trend is evident from the significant autocorrelation at lag 1, indicating that past demand values 
have a lasting effect on future demand. The spikes at lag 12 in both plots indicate the seasonality, pointing to 
a yearly cyclical pattern in demand. These characteristics suggest that a seasonal ARIMA model is appropri-
ate for modelling this time series, incorporating terms that account for both the autoregressive behaviour and 
the seasonal effects. The significant lags observed in both ACF and PACF plots guide the selection of the 
order of the SARIMA model. 
The seasonal patterns observed in DAP demand align with Kenya's bimodal agricultural calendar, where the 
long rains (March to May) and short rains (October to December) dictate planting seasons. DAP is used dur-
ing the planting phase, which is why there is higher demand during these periods. The periods of zero de-
mand likely correspond to off-seasons when top dressing is unnecessary.  The National Fertiliser Subsidy 
Program, particularly the subsidy allocation changes, caused farmer preference shifts. The demand for DAP 
(Diammonium Phosphate) decreased in 2010 and 2014, likely due to shifts in government policies or crop-
ping patterns. For instance, shifting from an e-voucher system to direct distribution through the National 
Cereals and Produce Board (NCPB) may have altered accessibility, affecting demand (Njagi et al. 2024). 
DAP is primarily used during planting, especially for cereals like maize and rice (Yaseen et al., 2023). The 
high demand observed in January and March corresponds with the short rainy season, essential for crop es-
tablishment in Kenya. The consistent demand throughout the rest of the year suggests a balanced application 
across various crops to maintain soil fertility. Kenya's agricultural practices, which vary significantly by re-
gion and crop type, also explain the variability in fertiliser demand. DAP is essential for maize and other 
staple crops. For example, the high demand for DAP in January and March corresponds with the preparation 
for the long rains, a critical period for maize planting. 
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Model building  
Diammonium Phosphate; SARIMA (0,0,0) (2,0,0) [12] w/ mean 
This model includes two seasonal autoregressive terms: SAR1, estimated at 0.309194, and SAR2, estimated 
at 0.205886. Both terms are statistically significant, with SAR1 having a p-value of 9.74E-05 and SAR2 hav-
ing a p-value of 9.75E-03 (Table 8). The constant term is estimated at 8432.586 and is highly significant, 
with a p-value of 7.22E-09. The variance of the residuals is estimated at 395,584,183. The model's log-
likelihood is -1901.23, with an Akaike Information Criterion (AIC) of 3810.46, a corrected AIC (AICc) of 
3810.7, and a Bayesian Information Criterion (BIC) of 3822.95. These results show that the seasonal auto-
regressive and constant terms play a significant role in the model. In addition, the model includes a mean 
term, which implies that the model accounts for a constant average level in the time series. 
 
TABLE 3: DIAMMONIUM PHOSPHATE SARIMA MODEL 
 

 

sigma^2 estimated as 395584183:  log likelihood=-1901.23, AIC=3810.46   AICc=3810.7 BIC=3822.95: 
This Model order is autogenerated from the auto. Arima () function in R based on the minimization of AIC 
and BIC 
 

 0.205886   

 

where  and  represents the value of the time series 12 periods (months) and the value of the 

time series 24 months before the current time t. 

 
The SARIMA (0,0,0) (2,0,0) [12] model with a mean for Diammonium Phosphate incorporates two signifi-
cant seasonal autoregressive terms (SAR1 and SAR2) and a constant term, which indicates a stable average 
level in the time series. The significance of SAR1 (p-value = 9.74E-05) and SAR2 (p-value = 9.75E-03) sug-
gests that the demand for Diammonium Phosphate is influenced by patterns that recur yearly, with lagged 
effects from 12 and 24 months prior playing a critical role. The constant term (8432.586, p-value = 7.22E-
09) supports the steady demand level, while the model’s residual variance (395,584,183) and log-likelihood 
(-1901.23) implies a relatively higher error variability compared to the previous models. 
 
Testing model accuracy 
To evaluate SARIMA model accuracy, residuals are analysed to ensure they resemble white noise, indicating 
the model has captured underlying patterns. This involves plotting residuals, checking autocorrelation with 
ACF and PACF, and assessing normality using statistical tests and Q-Q plots. Forecasting accuracy is evalu-
ated through comparison with a hold-out sample or cross-validation, and by comparing forecast plots to actu-
al values. 
 
Diammonium phosphate (DAP) Demand Forecast 
Figure 9 presents the forecasted demand for DAP fertiliser, with Table 4 displaying the 24-month forecast 
points. The forecasted values are all within the required bounds, indicating reliability in the predictions. The 
deep blue shaded area represents the 80% confidence level, while the light blue shaded area corresponds to 
the 95% confidence level. Notably, all forecasted points fall within the 95% confidence bounds, demonstrat-
ing that the predictions are within an acceptable range and, therefore, reliable. 

Model Term Estimate Std. error t-statistic p-value 

ARIMA sar1 0.309194 7.74E-02 3.992806 9.74E-05 

ARIMA sar2 0.205886 7.88E-02 2.614315 9.75E-03 

ARIMA constant 8432.586 1.38E+03 6.09617 7.22E-09 
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the model has captured underlying patterns. This involves plotting residuals, checking autocorrelation with 
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ing that the predictions are within an acceptable range and, therefore, reliable. 

Model Term Estimate Std. error t-statistic p-value 

ARIMA sar1 0.309194 7.74E-02 3.992806 9.74E-05 

ARIMA sar2 0.205886 7.88E-02 2.614315 9.75E-03 

ARIMA constant 8432.586 1.38E+03 6.09617 7.22E-09 
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Figure 9: Forecasts plot for diammonium phosphate fertiliser 
 
Table 4: Forecasts of diammonium phosphate fertiliser 

 

 
The plots to test the normality of the forecasts indicated that the forecasts are normally distributed (as shown 
in Figure 10). A plot to check the deviation between the fitted and actual data also indicates slight deviations, 
confirming that the model was a good fit for forecasting. The Shapiro-Wilk normality test yielded W = 
0.90764 and a p-value = 8.636e-09. W is close to 1, indicating that the residues closely approached normal 
distribution. The graph in Figure 13 shows standardized deviations of residuals from normality 
 

 
Figure 10: Distribution of the forecast for diammonium phosphate. 
Figure 10 presents the actual and fitted values of the Diammonium Phosphate demand from January 2010 to 
Dec 2023. The red line indicates the actual data, while the blue line represents the fitted model. The graph 
indicates pronounced variability, with frequent and sharp spikes in demand. Although the fitted values fol-
low the general pattern of the actual data, there are noticeable deviations, particularly during periods of high 
demand. Despite these discrepancies, the fitted model still captures the data's overall trend and seasonal fluc-
tuations. The model's ability to generally track the actual demand, even with some deviations during peak 
periods, suggests that the predictions remain reliable. A plot to check the normality of the residues (in figure 
12) indicated that the residues slightly follow normality, a confirmation of the model's accuracy.  

Month Qty (in metric tons) Month Qty (in metric tons) 

2024 Aug N (20405, 4e+08) 2025 Aug N (18139, 4.3e+08) 

2024 Sep N (22718, 4e+08) 2025 Sep N (19780, 4.3e+08) 

2024 Oct N (11500, 4e+08) 2025 Oct N (11988, 4.3e+08) 

2024 Nov N (11518, 4e+08) 2025 Nov N (14048, 4.3e+08) 

2024 Dec N (19764, 4e+08) 2025 Dec N (19073, 4.3e+08) 

2025 Jan N (31203, 4.3e+08) 2026 Jan N (24896, 4.7e+08) 

2025 Feb N (11040, 4.3e+08) 2026 Feb N (13582, 4.7e+08) 

2025 Mar N (36638, 4.3e+08) 2026 Mar N (27698, 4.7e+08) 

2025 Apr N (11040, 4.3e+08) 2026 Apr N (13582, 4.7e+08) 

2025 May N (11068, 4.3e+08) 2026 May N (13610, 4.7e+08) 

2025 Jun N (11040, 4.3e+08) 2026 Jun N (13582, 4.7e+08) 

2025 Jul N (11040, 4.3e+08) 2026 Jul N (13582, 4.7e+08) 



Time Series Modelling of DAP    157 

J. Env. Sust. Adv. Res. 2024 (1) 147-159 

 

 
Figure 11: Fitted vs. actual time series for diammonium phosphate 
 

 
Figure 12: Residuals vs. normal for diammonium phosphate 

 
Figure 13: Standardised residuals plot for diammonium phosphate 
 
All the test done to evaluate the accuracy of the model aligns with various test done. Shapiro-Wilk normality 
test applied to DAP fertiliser model residuals assessed the normality of residuals for the SARIMA model, 
following the approach of Harris (2001).  Harris (2001) demonstrates the efficacy of the Shapiro-Wilk test in 
validating model residuals, ensuring that the assumptions of normality are met for reliable forecasts. Similar-
ly, the application of this test confirmed that the residuals for DAP fertiliser from the fertilizer demand mod-
el adhered to normal distribution assumptions, thereby reinforcing the accuracy and validity of forecasting 
results.  Q-Q residual plots utilized in this analysis visually assess the distribution of residuals from the mod-
el, echoing the methodology employed by Harris (2001). As indicated by Harris (2001) Q-Q plots effectively 
reveal deviations from normality by comparing the quantiles of residuals to a theoretical normal distribution. 
By applying this technique, verification that the residuals from DAP fertilizer demand forecasts approxi-
mately followed a normal distribution was ascertained, thereby supporting the robustness of our models and 
aligning with established practices in time series forecasting.  
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Conclusion and recommendation 
This study addressed the urgent need to forecast DAP fertiliser demand in Kenya, a country where agricul-
ture plays a pivotal role in the economy and sustenance of the population. Despite the increasing population, 
agricultural productivity has stagnated due to factors like suboptimal fertiliser application and distribution. 
This study's analysed trends and seasonal patterns in Kenya's DAP fertiliser demand and developed appropri-
ate SARIMA models that can be used to forecast future demand for this fertiliser type. Using time series 
analysis, the study successfully identified patterns in fertiliser consumption and developed SARIMA model 
for DAP fertiliser using the Box Jankins approach. This model was then applied to forecast future fertiliser 
demand, providing a valuable tool for stakeholders in the agricultural sector to make informed decisions and 
improve planning processes in Kenya. 
 
The study's key findings reveal that DAP fertiliser demand in Kenya exhibits distinct seasonal patterns, with 
higher demand during January, March and April due to the country’s agricultural practices. Notably, there is 
an increasing trend in DAP fertiliser demand, indicating that future needs will grow as the population and 
agricultural activity expand. The seasonal nature of fertiliser demand is particularly pronounced during the 
long and short rainy seasons when agricultural activities peak and the need for fertiliser increases. The find-
ing of this study indicated that the DAP fertiliser demand can be represented by SARIMA (0,0,0) (2,0,0) 
[12]. This study recommended incorporation of SARIMAX and Hybrid Models for Comprehensive Forecast-
ing. Therefore, future research should consider employing SARIMAX (Seasonal Autoregressive Integrated 
Moving Average with Exogenous Regressors) models alongside hybrid forecasting models. SARIMAX 
models can account for seasonal and non-seasonal components and external factors influencing fertiliser 
demand. Exploring hybrid models that combine SARIMAX with machine learning techniques, such as en-
semble methods or neural networks, could offer enhanced predictive accuracy by leveraging the strengths of 
both statistical and data-driven approaches. 
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